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Abstract

Large scale real-world network data, such as social networks, Internet and Web graphs, is ubiquitous
in a variety of scientific domains. The study of such social and information networks commonly finds
patterns and explain their emergence through tractable models. In most networks, especially in social
networks, nodes also have a rich set of attributes (e.g., age, gender) associated with them. However, most
of the existing network models focus only on modeling the network structure while ignoring the features
of nodes in the network.

Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs
(MAG), which naturally captures the interactions between the network structure and node attributes.
We consider a model where each node has a vector of categorical features associated with it. The
probability of an edge between a pair of nodes then depends on the product of individual attribute-
attribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We
derive thresholds for the connectivity, the emergence of the giant connected component, and show that
the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution
to show that the model can produce networks with either lognormal or power-law degree distribution
depending on certain conditions.

1 Introduction
With the emergence of the Web large, online social computing applications have become ubiquitous. They
in turn have given rise to a wide range of massive real-world social and information network data. The
unifying theme is then to study real-world social and information networks, with an emphasis on finding
and explaining patterns in large social networks, computer networks, Internet networks, communication
networks, e-mail interactions, Web graphs, gene regulatory networks, and so on. The main aim is to answer
questions such as: What do real graphs look like? How do they evolve over time? How can we synthesize
realistic looking graphs? How can we find models that explain the observed patterns? What are algorithmic
consequences of the observations and models?

Empirical observations andmodels that explain them. Research on networks has focused on two aspects.
First, the empirical analysis of large real-world networks aims to discover common structural properties or
patterns, such as heavy-tailed degree distributions [13, 10], local clustering of edges [34], small diame-
ter [3, 23], navigability [29, 17], and so on. Second, there have been efforts to find the network formation
mechanisms that naturally capture such structural features. Again, there have been two relatively disjoint
approaches to come up with desirable models. The approach mainly in the theoretical computer science
has developed relatively simple but analytically tractable network models that naturally lead the network
properties observed in the real-world. The prime examples of this line of work are following: the Pref-
erential Attachment model and its variants [4, 1, 8, 9, 11, 14], the Copying Model [18], the Small-world
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model [34, 17], the Forest Fire model [24], the Random surfer model [5], and models of bipartite affiliation
networks [19]. On the other hand, in statistics, machine learning and social network analysis, another ap-
proach has put efforts into the development of statistically sound models that consider the structure of the
network as well as the features(e.g.age, gender) of nodes and edges in the network. Such models include,
the Exponential Random Graphs [32], the Stochastic Block Model [2] and the Latent Space Model [15].

“Mechanistic” and “Statistical” models. Generally, there has been some gap between these two lines
of research. The emphasis with “mechanistic” models is on the analytical tractability in a sense not only
that one can mathematically analyze properties of the networks that arise from the model but also that
these network structures naturally emerge from the model. However, from the “statistical” point of view,
such models are usually not interesting mainly due to their simplicity. On the contrary, most “statistical”
models are analytically intractable and the network properties do not naturally emerge from the model in
general. Conversely, such models are normally able to jointly model the node features as well as the network
structure. They are usually accompanied by statistical procedures for model parameter estimation and are
very useful for testing various hypotheses about the interaction of linking patterns and the properties of
nodes.

However, models of network structure or formation are seldom both analytically tractable and statisti-
cally interesting. One example for models satisfying both features is the Kronecker graphs model [21, 35],
which is based on the recursive tensor product of small graph adjacency matrices. Kronecker graphs are
analytically tractable in a sense that one can analyze global structural properties of networks that emerge
from the model [28, 20, 6]. Besides, it is statistically meaningful because there exists an efficient parameter
estimation technique based on maximum likelihood [22]. It is empirically shown that with only four param-
eters Kronecker graphs quite accurately model the global structural properties of real world graphs such as
degree distributions, edge clustering, diameter and spectral properties of the graph adjacency matrices.

Modeling networks with rich node attributes. Network models in general investigate the relationships
between nodes, but a rich set of attributes are associated with each node, especially in social networks.
Traditionally, not only people’s connections but also their characteristics, like age, gender, work place,
habits, etc., have been collected as social network data via questionnaires with them.. Similarly, various
profile information is provided by users in online social networks. In this sense, both node attributes and
network structures need to be considered simultaneously in many situations.

The attempt to model both of them raises a wide range of questions. For instance, how do we account
for the heterogeneity in the population of the nodes or how do we combine node features in an interesting
way to obtain probabilities of individual links? While the earlier work on a general class of latent space
models formulated such questions, most resulting models were either analytically tractable but hard to fit to
real data or statistically very powerful but analytically intractable.

Here we propose a model that naturally captures the interactions between the network structure and
node attributes in a clean and tractable manner. First, we consider a model where each node has a vector
of categorical features, which are in turn characterized by their preferences to the similarities. For example,
if people share certain features like hobby, they are more likely to be friends. Reversely, for some features
like gender, people are more likely to have some relationships with the opposite characters. Each case is
named as homophily(i.e. love of the same) and heterophily(i.e. love of the difference), respectively. Thus,
the proposed model is designed to capture the homophily as well as the heterophily that naturally occurs in
social networks. Furthermore, this preference can be naturally enhanced to the node level by multiplying all
scores between a pair of nodes so that it represents the probability of the edge between them. Through the
multiplicative way, the node attributes and the network structure can be nicely blended.
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Figure 1: Schematic representation of the model. Given a pair of nodes u and v with the corresponding
attribute vectors a(u) and a(v), the probability of edge P (u, v) is the product over the entries of attribute-
attribute similarity matrices Θi where values of ai(u) and ai(v) “select” the appropriate entry (row/column)
of Θi.

We refer to this class of network models as the Multiplicative Attribute Graphs (MAG). We now proceed
to formulate the model and show that it is both statistically interesting and mathematically tractable in the
following.

1.1 Formulating Multiplicative Attributes Graph model

Since there are several aspects that the model should take account of, we undertake the Multiplicative At-
tributes Graph (MAG) model via a sequence of steps.

General considerations. The basic setting under which we operate is that each node u has a set a(u) of
l categorical attributes associated with it. For a simple example, we might assume that the attributes are
binary. One can t hink of these attributes as if we ask weach node, i.e. each person in the social network, a
series of l yes/no questions such as ”Are you female?” or ”Do you like ice creams?”, and so on. A sequence
of answers to these questions forms a binary vector of length l that associates with each node.

The second essential ingredient is to specify a mechanism that generates the probability of an edge
between two nodes where the attribute vectors of the nodes are given. As mentioned before, we would like
our model to be able to account for both the homophily of certain features and the heterophily of the others.
To elaborate the idea mentioned before, the way that we here propose is to associate each feature i (i.e. i-th
question) with an attribute-attribute similarity matrix Θi. For the above binary example, eacho Θi should
be 2× 2 matrix. The entries of matrix Θi represent the edge probability given the values of i-th attribute of
both nodes. Thus, if the attribute reflects homophily, the corresponding matrix Θi would have large values
on the diagonal (i.e. the probability of the edge is high when the nodes’ answers match), while for attributes
with heterophily the off-diagonal values of Θi would be high (i.e. the probability of the link is high when
nodes gave different answers to the same question).

The Multiplicative Attributes Graph (MAG) model. Now we present the general version of the MAG
model. First, let each node u have a vector of l categorical attributes associated with it. We assume that each
attribute i = {1, . . . , l} has cardinality di. We also have a set of l matrices Θi of size di × di. Each entry of
Θi is a probability, i.e. a real value between 0 and 1. Then, as shortly mentioned before, the probability of an
edge (u, v), P (u, v), is defined as the multiplication of probabilities corresponding to individual attributes,
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i.e.

P (u, v) =
l

∏

i=1

Θi[ai(u), ai(v)] (1)

where ai(u) denotes the value of i-th attribute of node u. Notice that edges appear independently with
probability determined by node attributes and matrices Θi. Figure 1 illustrates the model.

One can think of the MAG model in the following sense. In order to construct a social network, we ask
each node u a series of multiple-choice questions and the attribute vector a(u) associated with node u stores
the answers of u to these questions. Θi then reflects the marginal probability of an edge over the answers of
a pair of nodes for the i-th question. That is, the answers of nodes u and v on a question i “select” an entry of
matrixΘi, i.e. u’s answer selects a row and v’s answer selects a column. One can thus think of matricesΘi’s
as the attribute-attribute similarity matrices. Supposed that the questions are appropriately chosen so that
answers should be independent, the product over the entries of matrices Θi results in the global probability
of an edge between u and v.

The proposed model is statistically interesting as one can pose many attractive problems: given attribute
vectors of all nodes and the network structure, how to estimate the values of matricesΘi or infer the attributes
of unobserved nodes; or, given a network, how to estimate both the node attributes and the matrices Θi.
A simple expectation maximization based method could be a approximate solution to estimate the model
parameters, however, we leave the questions of the efficient model parameter estimation as the future work.

On the other hand, the proposed model is also mathematically tractable in a sense that we can formally
analyze the properties of the model. However, since the model currently includes too many parameters to
exhibit common properties, we next introduce a simplified version of the model.

Simplified version of the model. We here delineate a simplified version of the model that we will then
mathematically analyze in the further sections of the paper. First, while the general MAG model applies to
directed networks, for computational convenience we will consider only undirected networks that each Θi

should be symmetric. Moreover, we assume binary attributes and thus matrices Θi have 2 rows/columns. To
further reduce the number of parameters, we will also assume that the similarity matrices for all attributes

are the same, i.e. Θi = Θ for all i. By all assumptions on Θi’s, we can indeed set Θ =

[

α β
β γ

]

,

i.e. Θ[1, 1] = α,Θ[1, 0] = Θ[0, 1] = β, and Θ[0, 0] = γ for 0 ≤ α,β, γ ≤ 1.
Furthermore, all our results will hold where α > β > γ. As we show later, the assumption α > β > γ

is very natural since most real-world networks have a common structure [20].
Last, we also assume a simple generative model of node attributes where each binary attribute vector

is generated by a set of l independently and identically distributed coin flips. That is, we use an i.i.d.
Bernoulli distribution parameterized by µ to model attribute vectors where the probability that i-th attribute
of a node u takes value 1 is P (ai(u) = 1) = µ for i = 1, · · · , l and 0 < µ < 1 (also analogously
P (ai(u) = 0) = 1− µ).

After all, the MAG modelM(n, l, µ,Θ) is fully specified by six parameters: n is the number of nodes,
l is the number of attributes, µ is the probability that attribute takes a value of 1 andΘ = [α β;β γ] specifies
the shared attribute-attribute similarity matrix.

We now study the properties of the random graph that results from the MAGmodelM(n, l, µ,Θ) where
every pair of nodes (u, v) is independently and undirectly connected with probability P (u, v) defined in
Equation 1. Since the probability exponentially decreases as a function of l, the most interesting case occurs
when l = ρ log n for some constant ρ (Corollary 2.4).1 Our analyses will focus on this case.

1Throughout the paper, every log notation indicates log2 unless we explicitly specify it as ln.
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Connections to other models. We note that our model belongs to a general class of latent space network
models, where it is assumed that nodes have some discrete or continuous valued attributes and the probability
of linking depends on the attribute values of the two nodes. For example, the Latent space model [15]
assumes that nodes reside in d-dimensional Euclidean space and the probability of an edge depends on the
Euclidean distance between the locations of the nodes. Similarly, in Random dot product graphs [36], the
linking probability depends on the inner product between the vectors associated with node positions.

The MAG model generalizes the Kronecker graphs model [20] in a subtle and surprising way. The
Kronecker graphs model takes a small (usually 2 × 2) initiator matrix K and tensor-powers it l times to
obtain a matrix G of size 2l × 2l, simply interpreted as the graph adjacency matrix. As shown in [20], one
can think of a Kronecker graph model as a variant of the MAG model.

Proposition 1.1 A Kronecker graph G on 2l nodes with a 2 × 2 initiator matrix K is equivalent to the
following MAG graphM : Let us number the nodes ofM as 0, · · · , 2l − 1. Let the binary attribute vector of
a node u be simply a binary representation of its node id, and letΘi = K . Then individual edge probabilities
(u, v) of nodes in G match those inM , i.e. PG(u, v) = PM (u, v).

This is interesting for several reasons. First, all results obtained for Kronecker graphs naturally apply to
a subclass of MAG graphs where the node’s attribute values are simply the binary representation of its id.
This means that in a Kronecker graph version of the MAG model each node has a different combination
of attribute values (i.e. each node has different node id) and all attribute value combinations are occupied
(i.e. 0, · · · , 2l − 1). Secondly, building on this correspondence between Kronecker and MAG graphs, we
also note that the estimates of the Kronecker parameter matrix K nicely transfer to the MAG model. For
example, K = [α = 0.98,β = 0.58, γ = 0.05] accurately models the graph of the internet connectivity,
while the global network structure of the Epinions online social network is captured byK = [α = 0.99,β =
0.53, γ = 0.13] [22]. Thus, in the rest of the paper, we will consider the above values of K as the typical
values that matrix Θ would normally take. In this respect, the assumption that α > β > γ turns out to be
completely natural.

Furthermore, the fact that most large real-world networks satisfy α > β > γ tells us that such networks
have an onion-like “core-periphery” structure [25, 20]. In other words, the network is composed from denser
and denser layers as one moves towards the core of the network. Basically, α > β > γ means that more
edges are likely to appear between nodes which have value 1’s on more attributes and these nodes form
the core of the network. Since more edges appear between pairs of nodes with attribute value combination
“1–0” than between those with “0–0”, there are more edges between the core and the periphery nodes (edges
“1–0”) than between the nodes of the periphery themselves (edges “0–0”).

1.2 Summary of results

We study the following structural properties of networks that arise from the MAG model as a function of
model parameters n, l, µ and Θ.

First of all, we show that the expected number of edges inM(n, l, µ,Θ) scales as:

1

2
n2+ρ log(µ2α+2µ(1−µ)β+(1−µ)2γ) where ρ = l/ log n (Theorem 2.3)

Note that the logarithmic term is less than 0. Our model thus produces graphs that obey the Densification
Power Law [23] which states that in real networks the number of edges m(t) as a function of time t grows
asm(t) ∝ n(t)a for a > 1, i.e. average degree in the network increases over time.
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Moreover, we study the conditions under which the MAG graph is connected (Theorem 4.1) and also
show that the giant connect component of size Θ(n) emerges when:

[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

≥
1

2
(Theorem 5.1)

Besides, we show that aMAG graph has a constant diameter with high probability when (µβ + (1− µ)γ)ρ >
1
2 (Theorem 6.1).
Finally, we derive the analytical expression for the degree distribution which can have very different

shapes depending on the parameter setting. However, under mild conditions, we can show that the degree
distribution follows a lognormal (Section 3). We view this as particularly interesting because there has
been a long standing debate about distinguishing power-law distributions from lognormal distributions in
empirical data [30, 31] and what kinds of differences that this would make about the understanding of real-
world networks. However, as we show later, our model can model networks with the degree distribution
following a lognormal as well as those with power-law degree distributions.

Putting these results into context, we provide some normally expected values of model parameters that
arise in real-world networks. As discussed above, we expect that [α = 0.98,β = 0.55, γ = 0.1] could be a
typical example of parameter Θ. For instance, when we have a network with 1 million nodes (i.e. n = 106)
and set µ = 0.5 and ρ = 0.75, we expect to have roughly 30 million edges. This network will be just above
the threshold for the emergence of the giant connect component, whereas it will be just below the threshold
which would ensure that the network is connected. This example seems interesting since it hints that real-
world networks are in the parameter region analogous to an extremely sparse Erdős-Rényi [12]Gnp random
graph model with 1/n < p < log n/n.

1.3 Extensions and further results

In addition to the simple version, we demonstrate the flexibility of the original model by showing how
a simple and natural generalization from the simplified model can give rise to networks with power-law
degree distributions with any power-law degree exponent δ > 1. In order to obtain power-laws, all we need
is to relax the assumption that all attributes are generated from the same Bernoulli distribution and share
the similarity matrix. In other words, we assume that the i-th attribute is generated i.i.d. from a Bernoulli
distribution with parameter µi, i.e. each attribute has a different probability of taking value of 1, as well as
that the i-th similarity matrix is Θi. We then illustrate that for each power-law exponent δ there exists a
setting of µi’s and Θi’s such that the power-law degree distribution arises.

There are clearly many directions in which the model could be generalized and improved. Our goal here
is to explore some of the interesting phenomena that emerge already in a very simple version of the model,
but one can easily generalize our framework to assume a different attribute generative models, or consider
other ways to combine individual entries of Θi.

Another significant direction for the future lies in further understanding the properties of the model; for
example, the degree of local clustering, spectral properties of the MAG model , or efficient (decentralized)
searchability and navigability. Especially, we believe that the searchability problem is interesting since for
an efficient local search algorithm one could use the information both about the node attributes and about the
attribute-attribute similarity matrices. The setting in MAG model reminds us of that in [33] where authors
consider that nodes of a tree reside in multiple places of a large hierarchy and the probability of connection
depends on the tree distance between the positions of the corresponding nodes.

A very different direction of future work lies in parameter estimation of the MAG model. We here
envision several versions of problem. The most general one is that we are given a network on n nodes and
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are asked to estimate attribute vectors of all nodes and the similarity matrices of all attributes. Other variants
of the problem include the case where a network is missing some edges, i.e. some random set of edges is
missing (unobserved, hidden) and the question is then to recover the missing edges based on the partial
network. This is an interesting variant of the link prediction problem [26] where not only we have access
to the network but also we know the attributes of nodes. Similarly, where given a network and partial node
attribute values, one may be interested in the estimation of the missing attribute information. In such case,
the actual objective would be to estimate the attribute similarity matrices based on a network structure and
infer the missing attributes by using the similarity matrices as well as the network structure.

2 The Number of Edges
In this section, we deal with the expected number of edges in MAG model as its first property, which
implies more importance than just counting edges. In order to compute the expectation, we equivalently
study not only the expected degree of nodes but also the expected probability of connection between two
random nodes, because these values are, thanks to the linearity of expectation, naturally followed by the
total number of edges.

Furthermore, this mathematical analysis is followed by two substantial features. The first one is the
validiation of the assumption, l = ρ log n for some constant ρ. One might easily make sure that the number
of attributes cannot be too large since the edge probability would exponentially decrease as it grows in our
model. Once the number of edges is expressed as a function of parameters including n and l, this expression
can explain the assumption clearly and analytically. The other characteristic is the change of graph density
when the number of nodes increases. As briefly mentioned before, social networks generally obey the
Densification Power Law [23]. Under the l = ρ log n assumption, the number of edges can demonstrate that
MAG model also nicely follows this law. These two features are studied at the end of this section.

Before the actual analysis, for convenience, we define some useful notations. First, let V be the set of
nodes in the MAG graphM . We refer to the weight of a node as the number of 1’s among its attributes. For
a node u ∈ V , |u| denotes its weight, i.e.

|u| =
l

∑

i=1

1 {ai(u) = 1}

where 1 {·} is an indicator function. Additionally, Wj denotes a set which consists of nodes with the same
weight, j, i.e. Wj = {u ∈ V : |u| = j} for j = 0, 1, · · · , l. Similarly, Sj denotes the set of nodes with
weight which is greater than or equal to j, i.e. Sj = {u ∈ V : |u| ≥ j}. By the definitions, Sj = ∪l

i=jWi

undoubtedly holds.
Since in the simplified MAG model each attribute is independently sampled from Bernoulli(µ), the

weight of a node eventually follows the binomial distribution Bin(l, µ). The expected size ofWi is therefore
easily computed as E [Wj ] = n

(l
j

)

µj(1−µ)l−j . With regard to |Sj |, it is the sum of containedWi’s because
eachWi is disjoint with others.

Furthermore, we require another notation as follows. For a pair of nodes, u and v, P [u, v] denotes the
probability of connection between them where their attributes are provided. Note that it is conditioned on
their attributes, which are also Bernoulli random variables. That is, P [·, ·] is a function of random variables,
i.e. a random variable by itself. As a consequence, E [P [u, v]] represents the expected number of edges over
the joint distribution of u and v’s attributes.

On the other hand, since each connection is determined by Bernoull distribution, P [u, v] is effectively
the same as its expectation. In this sense, we can similarly define the expected connections between a
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node and a set of nodes or between two sets of nodes. Formally, for S, S′ ⊂ V , P [u, S] and P [S, S′]
represent

∑

v∈S P [u, v] and
∑

u∈S P [u, S′], respectively. Also both are undoubtedly random variables over
the corresponding attributes.

As described above in brief, the expected number of edges is naturally led by the expected degree of
a node, which can be obtained from the expected degree conditioned on the weight of the node. In other
words, we first calculate E [P [u, V ] |u ∈ Wi] and sum them up over the weight distribution. This conditional
expectation can be quite simply derived from the following lemma:

Lemma 2.1 For distinct u, v ∈ V ,

E [P [u, v] |u ∈ Wi] = (µα+ (1− µ)β)i (µβ + (1− µ)γ)l−i

What this lemma represents is the conditional probability of connection where the weight of one node is
given. Its rigorous proof is described in Appendix. By Lemma 2.1 and the linearity of expectation, we can
sum this conditional probability over all nodes to result in the following lemma:

Lemma 2.2 For u ∈ V , its expected degree is

E [deg(u)|u ∈ Wi] = (n− 1) (µα+ (1− µ)β)i (µβ + (1− µ)γ)l−i + 2αiγl−i

Since |V \u| = n − 1, the expected number of connections to other nodes is equal to the first term in
Lemma 2.2. In contrast, the second term represents the double probability of the self-edge, effectively the
expected degree of self-edges.

Since the number of edges is a half of the degree sum by definition, all we need to do is to average
E [deg(u)|u ∈ Wi] over the weight distribution, i.e. binomial distribution Bin(l, µ) and halve it. Then, we
can lead the expected number of edges as follows.

Theorem 2.3 For the MAG graphM(n, l, µ,Θ) , the number of edges m is expected to be

E [m] =
n(n− 1)

2

(

µ2α+ 2µ(1− µ)β + (1− µ)2γ
)l
+ n (µα+ (1− µ)γ)l

Proof:

E [m] = E

[

1

2

∑

u∈V
deg(u)

]

=
1

2
n

l
∑

j=0

P (Wj)E [deg(u)|u ∈ Wj ]

=
1

2
n

l
∑

j=0

(

l

j

)

(

(n− 1) (µα+ (1− µ)β)j (µβ + (1− µ)γ)l−j + 2αjγl−j
)

=
n(n− 1)

2

(

µ2α+ 2µ(1− µ)β + (1− µ)2γ
)l
+ n (µα+ (1− µ)γ)l (*)

This is also divided into two diffrent terms. The first term indicates the number of edges between
different nodes, while the second term means the number of self-edges. Therefore, if we exclude self-edges,
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then the number of edges would be reduce to the first term. This term can be expressed in the vector form
as

(n
2

) (

z
TΘz

)l where z = [µ 1− µ]T .
From Theorem 2.3, the density of graph turns out to be l-th power of an affine combination of α,β, and

γ by definition. That is, as µ becomes larger, the expected probability goes to αl and the graph becomes
denser. Conversely, µ becomes smaller, then the probability decreases to γl and the graph becomes sparser.
In this view, µ acts like a controller of the graph density.

However, more significantly, since the density of graph is l-th power of some constant less than 1, l
cannot grows too large compared to n. Otherwise, the density drops so much that the graph cannot contain
as many edges as nodes. Conversely, The following two corollaries describe it in detail.

Corollary 2.4 If l
logn > − 1

log(µ2α+2µ(1−µ)β+(1−µ)2γ) as n → ∞, thenm ∈ o(n) with high probabiltiy.

In other words, in order for M(V,E) to have a proper number of edges, for example, more than n, l
should be bounded by the order of log n. We did not give any specific reason to set l = ρ log n before, but
Corollary 2.4 provides it.

Corollary 2.4 is simply provable. Suppose that l = log n (ε− 1/ log ζ) for ζ = µ2α + 2µ(1 − µ)β +
(1− µ)2γ and ε > 0. By Theorem 2.3, the expected number of edges is Θ

(

n2ζ l
)

. However, since µ and γ
is less than 1 so that ζ < 1 and log ζ < 0, this expectation is after all equal to

Θ(n2ζ l) = Θ
(

ζ l+
2 log n
log ζ

)

= Θ(n1+ε log ζ) = o(n)

On the contrary, one can think that l might be much less than log n, i.e. o(log n). However, in this case,
M(V,E) becomes too dense, asymptotically close to Θ(n2), as n → ∞. Since most social networks are
quite sparse, this case can be reasonably excluded. Therefore, both Corollary 2.4 and this exclusion is fully
supportive of the assumption that l = ρ log n.

Under this validated assumption, the expected number of edges without self-edges can be restated as
follows:

n(n− 1)

2

(

µ2α+ 2µ(1− µ)β + (1− µ)2γ
)l ≈

1

2
n2+ρ log(µ2α+2µ(1−µ)β+(1−µ)2γ)

We can easily confirm that this fact agrees with the Densification Power Law[23] thatm(t) ∝ n(t)a for
a > 1. For example, Kronecker graph, an instance of ρ = 1, µ = 0.5 (Proposition 1.1), would have the
desenification exponent a = log(|Θ|) where |Θ| denotes the sum of all entries in Θ.

Although we do not define any process here, we can interpret it in the folllowing way. When a new node
comes in, its behavior is governed by the node distribution seemingly independent of the graph structure.
However, in the long term, since the number of attributes grows slowly as the number of nodes increaes, they
are not obviously independent. This phenomenon is somewhat aligned with the real world. When a new
person enters the network, he or she seems to act independently, but people eventually constitue a structured
network in the large scale and their behaviors can be categorized into more classes as the network evolves.
Thus, this simplified model implies that the network might evolve in the log n order.

3 Degree Distribution
In this section, we would like to capture the degree distribution for the simplified MAG modelunder some
reasonable assumptions.2 Otherwise, its shape might be very different relying on the parameter setting.

2We trivially exclude self-edges not only because computations become simple but also because other models usually do not
include them.
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For instance, since the graph almost becomes a (sparse) Erdös-Rényi random graphif α ≈ β ≈ γ < 1,
the degree distribution will approximately follow the binomial distribution. For another extreme example,
in case of α, µ ≈ 1, the graph will be close to the clique, which obviously represents a different degree
distribution from a sparse Erdös-Rényi random graph.

For this reason, we have to narrow down the condition on µ and Θ as follows. First, µ close to 0 or
1 nearly leads a Erdös-Rényi random graph with edge probability p = α(µ ≈ 1) or γ(µ ≈ 0). Since the
degree distribution Erdös-Rényi random graph is trivially binomial, we will exclude this extereme case of
µ. On the other hand, with regard to Θ, the differences not only between α and β but also between β and γ
seem pretty large from the experimental results in [22]. We thus guess that a reasonable configuration space
for Θ would be placed where µα+(1−µ)β

µβ+(1−µ)γ is 1.6 ∼ 3. For the previous Kronecker graph example, its ratio is
actually about 2.44. Moreover, we figure out that the minimum ratio of examples in [22] is around 1.7. Our
approach for these additional conditions could be therefore supported by those real examples. Additionally,
because we want to study normal real-world networks which usually have giant components, the analysis
also assumes that the giant component exists, i.e.

[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

≥
1

2

The detailed explanation of this giant component condition is independently described in Section 5.
Under these assumptions, we are able to prove that for sufficiently large n the degree distribution ap-

proximately illustrates the quadratic relationship in the log-log scale like log-normal distribution. This result
is totally acceptable since some social networks follow the log-normal distribution. For instance, the Live-
Journal social network appears more parabolic than linear in the degree distribution[27].

In brief, since the average degree is a function of the node weight by Lemma 2.2, we can imagine that the
degree distribution might be mainly affected by the distribution of node weight. This node weight actually
follows binomial, however, when l is sufficiently large, it can be approximated to the normal distribution.
This normality of node weights will eventually lead the log-normality of degrees. In the rest of this section,
we show how the log-normality is derived.

Since the attributes of nodes are independent each other, the following general degree distribution
formula[36] would nicely work:

P (deg(u) = k) =

∫

u∈V

(

n− 1

k

)

(E [P [u, v]])k (1− E [P [u, v]])n−1−k du (2)

If we assign our expectations (Lemma 2.1) into the above equation, then

P (deg(u) = k) =
l

∑

j=0

(

l

j

)

µj(1− µ)l−jfj(k) (3)

where fj(k) =
(n−1

k

) (

xjyl−j
)k (

1− xjyl−j
)n−1−k for x = (µα+ (1 − µ)β) and y = (µβ + (1− µ)γ).

Unfortunately, since it seems difficult to find the exact closed form of Equation 3, we hope to approx-
imate this equation to some familiar closed form like polynomial. In order to employ several approxima-
tions, we require a couple of assumptions on the degree k. First, because the degree of maximum weight
node is expected to be O(n (µα+ (1− µ)β)l), k would be o(n) with high probability. Second, as we can
expect that the median weight of nodes would be roughly µl by Central Limit Theorem, almost a half of
nodes have degrees more than (µα+ (1− µ)β)µl (µβ + (1− µ)γ)(1−µ)l , i.e.the expected degree of median
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weight node (Lemma 2.2). Therefore, the assumption that k > (µα+ (1− µ)β)µl (µβ + (1− µ)γ)(1−µ)l

is totally acceptable when we focus on the tail of distribution.
Now we can consider Equation 3 as it is summed up by terms corresponding to j. Fortunately, most of

those terms turn out to be insignificant under our assumptions. Then, the probability pk = P (deg(u) = k)
is approximately proportional to one or few dominant terms. We thus seek for j such that maximizes
gj(k) =

(l
j

)

µj(1− µ)l−jfj(k) and show that log gj(k) is a quadratic function of log k
We begin with the approximation of fj(k). For large n and k, by Sterling approximation,

fj(k) ≈
√
2πn(n/e)n

(

xjyl−j
)k (

1− xjyl−j
)n−k

√
2πk(k/e)k

√

2π(n − k) ((n− k)/e)n−k

=
1

2πk
(

1− k
n

)

(

nxjyl−j

k

)k (
1− xjyl−j

1− k/n

)n−k

However, due to k ∈ o(n),
(

1− xjyl−j

1− k/n

)n−k

≈ exp
(

−(n− k)xjyl−j + (n− k)k/n
)

≈ exp(−nxjyl−j + k)

For large l, we can further solve gj(k) by normal approximation of the binomial:

ln gj(k) ≈ C −
1

2lµ(1− µ)
(j − µl)2 −

1

2
ln k − k ln

k

nxjyl−j
+ k

(

1−
nxjyl−j

k

)

= C −
1

2lµ(1− µ)
(j − µl)2 −

1

2
ln k + k(j − τ) ln

(

x

y

)

+ k

(

1−
(

x

y

)j−τ
)

for k = nxτyl−τ (µl ≤ τ) and a constant C . Using (j − µl)2 = (j − τ)2 + (τ − µl)2 +2(j − τ)(τ − µl),

ln gj(k) ≈ C ′ −
(j − τ)2

2lµ(1− µ)
− (j − τ)

(

k ln

(

x

y

)

−
τ − µl

lµ(1− µ)

)

+ k

(

1−
(

x

y

)j−τ
)

−
1

2
ln k

for a constant C ′.
Considering gj(k) as a function of j, not k, the following lemma describes j such that mazimizes the

gj(k).

Lemma 3.1 argmaxj gj(k) ≈ τ where MAG graphM has a giant component and τ ≥ µl.

It is proved is in Appendix. As described before and explained in Section 5, the existence of the giant
component is a sufficient and necessary condition that

[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

≥ 1
2 . By

this relationship, since τ ≥ µl and l = ρ log n, k is much greater than the first quadratic term. Then,
when

(

x
y

)

is practical (close to 1.6 ∼ 3), ln gτ+∆ would be at most −ck|∆| ln gτ for a constant c. After
all, gτ effectively dominates the probability pk, i.e. ln pk is roughly proportional to ln gτ . By assiging
τ = ln k−lnnyl

ln
(

x
y

) , we are able to obtain

ln pk ≈ C ′ −
1

2lµ(1− µ)





ln k − lnnyl

ln
(

x
y

) − µl





2

−
1

2
ln k
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which is a quadratic function of ln k. Therefore, we can conclude that the degree distribution roughly follows
the log-normal.

In the log-log plot, the slope varies from 1
2 to

(

1−µ
µ + 1

2

)

when τ changes from µl to l. Thus, at the tail

of distribution, the power-law might be observed when
(

1−µ
µ

)

is comparatively small.

4 Connectivity
In this section, we here want to seek for the threshold for the connectivity of MAG model, one of the useful
graph property, as done in [28]. Here is the overview of the connectivity. Since the node of less weight is
more likely to be isolated, we find out the node of minimum weight in the graph to ensure that it is connected
to the core. This minimum weight is a random variable, but its ratio to l converges to some constant which
varies according to µ. We in turn search for the lower bound for the expected degree of the minimum weight
node so that the graph should be connected. The combination of two assertions can consequently result in
the following theorem for the criteria of the connectivity as a function of n, l, µ, and Θ3.

Theorem 4.1 (Connectivity) As n → ∞, MAG graphM is connected with high proabilibty if
{

(µβ + (1− µ)γ)ρ > 1
2 when (1− µ)ρ ≥ 1

2
[

(µα+ (1− µ)β)ν (µβ + (1− µ)γ)1−ν
]ρ

> 1
2 otherwise

In contrast, M is disconnected with high probability if
{

(µβ + (1− µ)γ)ρ < 1
2 when (1− µ)ρ ≥ 1

2
[

(µα+ (1− µ)β)ν (µβ + (1− µ)γ)1−ν
]ρ

< 1
2 otherwise

where 0 < ν < µ is a solution of the following equation:
[

(µ

ν

)ν
(

1− µ

1− ν

)1−ν
]ρ

=
1

2
(4)

Note that the criteria are separated into two cases under the condition on µ. If we take a deep look at
this condition, we are able to easily figure out what it means. This condition tells us whether the expected
number of weight 0 nodes, i.e. E [|W0|], is greater than 1 or not, because |Wj| is a binomial random variable.
If this expectation is larger than 1, then the minimum weight is likely to be close to 0, i.e. O(1). In the other
case where the expected number of weight 0 nodes is quite small, we need to probe the minimum weight
approximately. Equation 4 describes the ratio of the minimum weight to l as n goes to infinity.

To state the proof briefly, the disconnectivity can be proved by showing that the expected degree of the
minimum weight node is too small to be connected with other nodes. Conversely, if the expected minimum
degree is large enough, say Ω(log n), then any subset of nodes will be connected with the other part of the
graph. However, to reach this claim, we essentially need the following theorem.

Theorem 4.2 (Monotonicity) For u, v ∈ V ,

E [P [u, v] ||u| = i] ≤ E [P [u, v] ||u| = j] if i ≤ j

3We assume that ρ = n/ log n
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Theorem 4.2 demonstrates that the node of more weight is more likely to be connected with the others.
That is, as the weight of a node is larger, the degree of it tends to be higher. In another view, as mentioned
before, the high degree nodes play ”core” roles in the graph, whereas the low degree nodes become ”periph-
eries”. This feature of MAG model has great effects on the connectivity as well as on the existence of giant
component (Section 5).

By the way, we can trivially derive the following corollary that will play a main role in showing the
lower bound of degree for the connectivity.

Corollary 4.3 E [P [u, v] |v ∈ Sj] ≥ E [P [u, v] |v ∈ Si]

This might be obvious since the (weighted) average of larger values is greater than that of smaller value.
The mathematical proofs of both theorem and corollary are described in Appendix.

Nowwe seek for the minimumweight of the graph. Let the minimumweight in V be Vmin. Undoubtedly,
it has some distribution depending on the parameters, µ andΘ. The following two lemmas illustrate the level
of the minimum depending on the situations.

Lemma 4.4 If (1− µ)ρ ≥ 1
2 , then Vmin ∈ O(1) with high probability as n → ∞.

Lemma 4.5 If (1− µ)ρ < 1
2 and ν < µ is a solution of the following equation:

[

(µ

ν

)ν
(

1− µ

1− ν

)1−ν
]ρ

=
1

2

, then Vmin
l → ν with high probability as n → ∞.

The reason for the separation is exactly the same as in Theorem 4.1. Their proofs are described in Appendix.
Now we move onto the degree part of proof assuming that the above two lemmas hold.
Assume that |Sj | ∈ Θ(n) for some j. Then, we hope to assert that if Sj is connected with high probabil-

ity when E [P [u, V \u] |u ∈ Wj] ≥ c log n for sufficiently large c as n → ∞. Let’s think of a subset S′ ⊂ S
such that S′ is neither an empty set nor S itself. Then, the expected number of edges between S′ and S\S′

is E [P [S′, S\S′]] = |S′| · |S − S′| · E [P [u, v] |u, v ∈ S] for distince u and v. By the monotonicity,

E [P [u, v] |u, v ∈ S] ≥ E [P [u, v] |u ∈ S, v ∈ V ]

≥ E [P [u, v] |u ∈ Wj, v ∈ V \u]

≥
c log n

n

Since the probability that there exists no edge between S′ and S\S′ is at most exp
(

−1
2E [P [S′, S\S′]]

)

by
Chernoff bound, it is bounded as follows:

P (S is disconnected) ≤
∑

S′⊂S

P (no edge between S′, S\S′)

≤
∑

S′⊂S

exp

(

−
c log n

2n
|S′| · |S\S′|

)

≤ 2
∑

i≤|S|/2

(

|S|
i

)

exp

(

−
c|S| log n

2n
i

)

≤ 2
∑

i≤|S|/2

exp

((

log |S|−
c|S| log n

2n

)

i

)

∈ o(1)
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as n → ∞. Therefore, Sj is connected with high probability.
Let Vmin

l → t for a constant 0 ≤ t < µ as n → ∞. Then, this setting can cover both cases of Lemma 4.4
and Lemma 4.5.

If
[

(µα+ (1− µ)β)t (µβ + (1− µ)γ)1−t
]ρ

> 1
2 ,

E [P [u, V \u] |u ∈ WVmin
] ≈ E [P [u, V \u] |u ∈ Wt] ≈

[

2
[

(µα+ (1− µ)β)t (µβ + (1− µ)γ)1−t
]ρ]logn

is greater than c log n. Since |SVmin
| is clearlyΘ(n), SVmin

is connected with high probability by proceeding
arguments. By the definition of Vmin, the entire graph is also connected.

On the other hand, when (µα+ (1− µ)β)
Vmin
log n (µβ + (1− µ)γ)

l−Vmin
logn < 1, the expected degree of a

node with |Vmin| weight is o(1) from the above relationship. Thus, some node inWVmin
is isolated with high

probability in this case.

5 Giant Connected Component
With regard to the global properties of social networks, the existence of the giant connected component is
more general than the connectivity. We here generalize the idea in [28] to induce the sufficient and necessary
condition for MAG model in the following theorem.

Theorem 5.1 (Connected Component) The sufficient and necessary condition for the existence of the giant
component with size Θ(n) inM is

[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

≥
1

2

where n → ∞.

The similar explanation to the connectivity would work here. Theorem 5.1 describes that the existence
of Θ(n) component relies on the degree of the median weight, instead of the minimum weight. The median
degree nodes usually play ”periphery” roles in the giant component rather than low degree nodes.

We can consider this in the following way. Assume that we randomly choose a pair of nodes from the
connected graph and remove their connection if exists. As the graph becomes sparse, the low degree nodes
tend to be isolated from the main component. After almost half of nodes are separated from the core, the
nodes of median degree now tends to have few connections. Even though the graph can be much sparser, it
still includes the giant component of a half size.

The proof consists of two major parts: one is the proof/disproof of existence ofΘ(n) component, and the
other is the proof of uniqueness. When proving/disproving the existence, depending on certain conditions,
we will suggest the corresponding examples/counter-examples. However, the existence of Θ(n) component
is not the sufficient and necessary condition that it is a giant component, since there might be another
Θ(n) component. Therefore, to prove it more strictly, the uniqueness of Θ(n) component has to follow the
existence of it. For this uniqueness, we will just show that if there are two connected components of size
Θ(n) then they are connected each other with high probability.

We now find the conditions where the component of size Θ(n) exists. Specifically, we check the three
kinds of subgraphs: Sµl, Sµl+l2/3 , and Sµl+l1/6 [28]. The following lemmas tell us the size of each subgraph.

Lemma 5.2 |Sµl| ≥ n
2 − o(n) as n → ∞.
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Lemma 5.3 |Sµl+l2/3 | = o(n) as n → ∞.

Lemma 5.4 |Sµl+l1/6 | ∈ Θ(n) as n → ∞.

Rigorous proofs of these are described in Appendix.
We in turn consider each condition that

[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ
is larger than, equal

to, or less than 1
2 .

First, if
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

> 1
2 , then since |Sµl| ∈ Θ(n) by Lemma 5.2, Sµl

is connected with high probability by Section 4. In other words, we are able to extract out a connected
component of size at least n

2 − o(n).
Second, when

[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

= 1
2 , we can apply the same argument be-

cause

E

[

P [u, V \u] |u ∈ Wµl+l1/6

]

≈
(

µα+ (1− µ)β

µβ + (1− µ)γ

)(ρ logn)1/6

is greater than c log n and |Sµl+l1/6 | ∈ Θ(n). Thus, Sµl+l1/6 is connected with high probability.

Last, on the contrary, when
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

< 1
2 , for u ∈ Wµl+l2/3 ,

E [P [u, V \u]] ≈
[[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ]logn

(

(µα+ (1− µ)β)

(µβ + (1− µ)γ)

)(ρ logn)2/3

is o(1) as n → ∞. Since Sµl+l2/3 is o(n) by Lemma 5.3, most of n− o(n) nodes are isolated, therefore the
size of the largest component cannot be Θ(n).

We now check the uniqueness of the Θ(n) connected component.
We already pointed out that Sµl or Sµl+l1/6 is included in the Θ(n) component. Let that compo-

nent be H . Then, since E [P [u, v] |v ∈ H] ≥ E [P [u, v] |v ∈ V \H ] by Theorem 4.2, E [P [u, V \H ]] ≤
n−|H|
|H| E [P [u,H ]] holds for every u ∈ V .
Assume that another connected component H ′ also contains Θ(n) nodes. As described before, we hope

to show that it is connected toH with high probability to present the contradiction.

E
[

P
[

H,H ′]] = |H ′|E
[

P [u,H ] |u ∈ H ′]

≥
|H ′| · |H|
n− |H|

E
[

P [u, V \H ] |u ∈ H ′]

≥
|H ′| · |H|
n− |H|

E
[

P
[

u,H ′] |u ∈ H ′]

Since both |H| and |H ′| are Θ(n), if E [P [u,H ′] |u ∈ H ′] is Ω(1), then E [P [H,H ′]] ∈ Ω(n), which
indicates that H and H ′ is connected with high probability.

On the other hand, if E [P [H,H ′]] is o(n), i.e., E [P [u,H ′] |u ∈ H ′] ∈ o(1), then H ′ should have at
least one isolated node with high probability by Chernoff bound. This is also contradiction. To sum up,
there is no more Θ(n) connected component with high probability.

15



6 Diameter
Another well-known property of social networks is that the diameter of the network remains constant even
though the number of nodes is huge. By introducing main ideas in [28], we can also show this feature in
MAG model as follows:

Theorem 6.1 (Constant Diameter) If (µβ + (1− µ)γ)ρ > 1
2 , then MAG model has a constant diameter

with high probability as n → ∞.

This theorem does not specify the exact number of diameter, but, at least, it guarantees the constant
diameter by offering the constant upper bound under the given conditions including that n is sufficiently
large.

We begin the proof with the introduction of an important lemma to hint the upper bound for the diameter.

Lemma 6.2 [28, 7, 16] For a Erdös-Rényi random graph G(n, p), if (pn)d−1/n → 0 and (pn)d/n → ∞
for a fixed integer d, then G(n, p) has diameter d with probability approaching 1 as n goes to infinity.

Lemma 6.2 describes only when the graph is a Erdös-Rényi random graph. However, if we can assure
that the probability between any pair of nodes is greater than p, then it is obvious that the diamter of the
graph would be at most that of G(n, p) [28].

To show a constant diameter, we will propose a subgraph such that each edge probability is greater than
that of Erdös-Rényi random graph described in Lemma 6.2. By definition, this proposed subgraph has a
constant diameter. If this subgraph is additionally directly connected with the rest part of the graph, then we
are able to conclude the constant diameter of the entire graph.

We now suggest Sλl for λ = µβ
µβ+(1−µ)γ and prove that this subgraph satisfies the above properties where

(µβ + (1− µ)γ)ρ > 1
2 .

First, show that Sλl has a constant diamter with high probability. To do so, since minu,v∈Sλl P [u, v] ≥
βλlγ(1−λ)l , it is enough to prove that G(|Sλl|,βλlγ(1−λ)l) has a constant diameter.

E [|Wλl|]βλlγ(1−λ)l = n

(

l

λl

)

µλl(1− µ)(1−λ)lβλlγ(1−λ)l

≈
n

√

2πlλ (1− λ)

(

µβ

λ

)λl ((1− µ)γ

1− λ

)(1−λ)l

=
1

√

2πlλ (1− λ)
(2 (µβ + (1− µ)γ)ρ)logn

Since |Wλl| goes to E [Wλl] as n → ∞, |Sλl|minu,v∈Sλl P [u, v] is at least Θ
(

(1+ε)log n
√
l

)

for a constant
ε > 0.

By Lemma 6.2, a Erdös-Rényi random graph G(|Sλl|, c(1+ε)log n

|Sλl|
√
l
) has diameter at most

(

1 + 1
ε

)

as n →
∞. Thus, the diamter of Sλl is also bounded by a constant.

16



Second, we need to show that every node in V \Sλl is directly connected to Sλl with high probability.
For any u ∈ V ,

E [P [u, Sλl]] =
l

∑

j=λl

n

(

l

j

)

µj(1− µ)l−jβjγl−j

= (2 (µβ + (1− µ)γ)ρ)logn





l
∑

j=λl

(

l

j

)

λj(1 − λ)l−j





By Centeral Limit Theorem,
∑l

j=λl λ
j(1−λ)l−j is approximately 1

2 . Therefore, E [P [u, Sλl]] is greater than
c log n for a constant c, and then, by Chernoff bound, u is directly connected to Sλl with high probability.

7 Extensions:Power-Law Degree Distribution
So far we have handled the simplified version of MAG model parameterized by only few variables. Even
with these few parameters, many well-known properties of social networks can be observed. However, as
for the degree distribution, even though the log-normal is one of the distributions that social networks could
follow, a lot of social networks are known to follow the power-law degree distribution. Unforunately, in the
simplified MAG model , we are not able to capture this property.

In this section, we show that MAG model might produce the desired property by releasing some con-
straints. We do not attempt to analyze it in a rigorous manner, but give the intuition about the model by
suggesting an example of configuration.

We now propse the model that follows the power-law degree distribution by increasing the number
of parameters. We still hold the condition that every attribute is binary and independently sampled from
Bernoulli distribution. In contrast to the simple version, we do not equalize the attribute distributions as
well as the similarity matrices. The formal definition of relaxed model is as follows:

P (aj(u) = 1) = µj

P [u, v] =
l

∏

j=1

Θj[aj(u), aj(v)]

After all, the number of parameters increases up to (4×l), which consist of µj’s andΘj’s for j = 1, 2, · · · , l.
With these more parameters, we are actually able to obtain the approximate power law degree, log pk ∝ k−δ,
for any power δ > 1.

Let the ordered probability masses of attributes events be p(j) for j = 1, 2, · · · , 2l. For example, if
the probability of each attributes event (00, 01, 10, 11) is respectively 0.2, 0.3, 0.4, and 0.1 when l = 2, the
ordered probability mass is p(1) = 0.1, p(2) = 0.2, and so on. Then, by Equation 2, the probability of degree
k, pk is as follows:

pk =

(

n− 1

k

) 2l
∑

j=1

p(j)(Ej)
k(1− Ej)

n−1−k

where Ej denotes the expected edge probability of attributes corresponding to p(j). If Ej’s are spread out
as in Section 3 so that few terms dominate the probability, we might approximate

ln pk ≈ ln

(

n− 1

k

)

p(τ)(Eτ )
k(1− Eτ )

n−1−k
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for τ such that Eτ ≈ k
n .

Applying the same algebra in Seciont 3, eventually the following statement would hold:

ln pk ≈ C + ln p(τ) −
1

2
ln k

Therefore, if we could configure as

p(τ) ∝ k−(δ− 1
2
) ∝ E

−(δ− 1
2
)

τ (5)

then it will follow the power-law degree distribution with power δ. We give an example that satisfies this
condition. To show that, we need the following lemma.

Lemma 7.1 The expected edge probability of this extended model is

l
∏

i=1

(µiαi + (1− µi)βi)
1{ai(u)=1} (µiβi + (1− µi)γi)

1{ai(u)=0}

This lemma can be easily proved by the mathematical induction.
On the other hand, the probability mass for the attributes is

l
∏

i=1

(µi)
1{ai(u)=1}(1− µi)

1{ai(u)=0}

From these these two probability formula, if every p(j) is distinct and µi
1−µi

∝
(

µiαi+(1−µi)βi

µiβi+(1−µi)γi

)−(δ− 1
2
)
, then

we are able to satisfy the relationship in (5). Since Θi’s are free to be configured, the above setting is totally
feasible.

One thing that we should be careful of is to make every p(j) different. It is also a tractable condition.
For example, if we set µi

1−µi
∝ ε2

i , then they would work well.
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A Appendix

Proof of Lemma 2.1: Let N0
uv be the number of 0-attributes shared by u and v. In a similar way, we can

define N1
uv as the number of 1-attributes shared. Clearly, N0

uv, N
1
uv ≥ 0 and N0

uv +N1
uv ≤ l hold. Then, by

the definition of MAG model, the probability of connection between u and v is αN1
uvβl−N0

uv−N1
uvγN

0
uv .
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However, N j
uv’s are also random variables functioned by attributes. Now, we find out the conditional

joint distribution of N j
uv’s where the weight of u is equal to i. Each attribute is independently 1 with

probability µ and 0with probability 1−µ. That is,N0
uv andN1

uv are also independent each other. Eventually,
N0

uv represents the number of 0-attributes in v among (l−i) 0-attributes in u. It is exactly equal to the number
of heads in (l − i) coin tosses with probabiltiy (1 − µ), which follows Bin(l − i, 1 − µ). Similarly, N1

uv

follows Bin(i, µ). Therefore, its joint probability is

P (N0
uv , N

1
uv|u ∈ Wi) =

(

i

N1
uv

)

µN1
uv(1− µ)i−N1

uv

(

l − i

N0
uv

)

µl−i−N0
uv(1− µ)N

0
uv

Using this, we can compute the expectation of P [u, v] given u’s weight:

E [P [u, v] |u ∈ Wi] = E

[

αN1
uvβi−N1

uvβl−i−N0
uvγN

0
uv |u ∈ Wi

]

=
i

∑

N1
uv=0

l−i
∑

N0
uv=0

(

i

N1
uv

)(

l − i

N0
uv

)

(αµ)N
1
uv ((1− µ)β)i−N1

uv (µβ)l−i−N1
uv ((1− µ)γ)N

1
uv

=





i
∑

N1
uv=0

(

i

N1
uv

)

(αµ)N
1
uv ((1− µ)β)i−N1

uv









l−i
∑

N0
uv=0

(

l − i

N0
uv

)

(µβ)l−i−N1
uv ((1− µ)γ)N

1
uv





= (µα+ (1− µ)β)i (µβ + (1− µ)γ)l−i

Proof of Lemma 3.1: By Theorem 5.1, the existence of a giant component indicates that

k ≥
[

(µα+ (1− µ)β)µ (µβ + (1− µ)γ)1−µ
]ρ

>> l

If we differentiate ln gj(k) over j,

(ln gj(k))
′ ≈ −

j − τ

lµ(1− µ)
−

(

k ln

(

x

y

)

−
τ − µl

lµ(1− µ)

)

− k

(

x

y

)j−τ

ln

(

x

y

)

= 0

Since k is large enough and (j − τ) ∈ O(l),

ln

(

x

y

)

≈
(

x

y

)j−τ

Therefore, when j is close enough to τ , gj(k) is maximized.

Proof of Theorem 4.2: For any vi ∈ Wi, we can easily find a node v′i by flipping j − i zero bits randomly
in vi so that P [u, v′i] ≥ P [u, vi]. Then, it is obvious that E [P [u, v′i] |vi] ≥ E [P [u, vi]]. Therefore,

E [P [u, v] |v ∈ Wj] = E
[

E
[

P
[

u, v′i
]

|vi
]]

≥ E [E [P [u, vi] |vi]]
= E [P [u, v] |v ∈ Wi]
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Proof of Corollary 4.3:

E [P [u, v] |v ∈ Sj] =
l

∑

k=j

P (v ∈ Wk|v ∈ Sj)E [P [u, v] |v ∈ Wk]

≥
l

∑

k=j

P (v ∈ Wk|v ∈ Si)E [P [u, v] |v ∈ Wk]

+
j

∑

k=i

P (v ∈ Wk|v ∈ Si)E [P [u, v] |v ∈ Wk]

= E [P [u, v] |v ∈ Si]

Proof of Lemma 4.4: The probability that |Wc| = 0 is at most exp(−1
2E [|Wc|]) by Chernoff bound. Since

E [|Wc|] ≥ n(l−c)c

c! µc(1 − µ)l−c, its probability goes to zero as l and n increase for fixed µ. Therefore, for
sufficiently large l and n, Vmin should be at most c with high probability.

Proof of Lemma 4.5: For any µ− ν > ε > 0,

E
[

|W(ν+ε)l|
]

≈ n

(

l

(ν + ε)l

)

µ(ν+ε)l(1− µ)(1−(ν+ε))l

≈
√
2πl( le)

l

√

2π(ν + ε)l( (ν+ε)l
e )(ν+ε)l

√

2π(1 − (ν + ε))
(

(1−(ν+ε))l
e

)(1−(ν+ε))l

× nµ(ν+ε)l(1− µ)(1−(ν+ε))l

=
n

√

2πl(ν + ε) (1− (ν + ε))

[

(

µ

(ν + ε)

)(ν+ε)( 1− µ

1− (ν + ε)

)1−(ν+ε)
]l

Since
(µ
x

)x
(

1−µ
1−x

)1−x
is a increasing function of x over (0, µ),

(

µ

(ν + ε)

)(ν+ε)( 1− µ

1− (ν + ε)

)1−(ν+ε)

= (1 + ε′)n−1/l

for a constant ε′ > 0. Therefore,

E
[

W(ν+ε)l

]

=
(1 + ε′)l

√

2πl(ν + ε) (1− (ν + ε))

exponentially increases as l increases. By Chernoff bound, |W(ν+ε)l| is not zero with high probability.
In a similar way, E

[

|W(ν−ε)l|
]

= (1−ε′)l√
2πl(ν−ε)(1−(ν−ε))

exponentially decreases as l increases. Thus, the

expected number of nodes with at most weight (ν − ε)l is less than (ν − ε)l E
[

|W(ν−ε)l|
]

so that it also
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drops to zero as l increases. Therefore, by Chernoff bound, there exists no node the weight of which is less
than (ν − ε)l with high probability.

To sum up, as n and l increases, Vmin tends to be νl with high probability.

Proof of Lemma 5.2: By Central Limit Theorem, (|u|− µl) ∼
√

lµ(1− µ)N(0, 1) as n → ∞. Therefore,
P (|u| ≥ µl) is at least 1

2 − o(1). Then, by the Law of Large Number,

|Sµl| →
n

2

as n → ∞.

Proof of Lemma 5.3: By Chernoff bound, P (|u| ≥ µl + l2/3) is o(1) as n → ∞, thus |Sµl+l2/3 | is o(n)
with high probability.

Proof of Lemma 5.4: By Central Limit Theorem mentioned in Lemma 5.2,

P (µl ≤ |u| < µl + l1/6) ≈ Φ(
l1/6

√

lµ(1− µ)
)− Φ(0)

is o(1) as n → ∞ where Φ(z) represents the cdf of the standard normal distribution.
Since P (|u| ≥ µl + l1/6) is still at least 1

2 − o(1), the size of Sµl+l1/6 is Θ(n).
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